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Abstract

In this thesis, we focus on solving the
game Gomoku-swap2. The challenges of
this domain are the size of the branching
factor and the depth of the game. For
this reason, the game cannot be solved
exactly and so the evaluation function es-
timating the quality of a game state is
the most important factor. Because it
is impossible to solve the game exactly,
we use Monte Carlo Tree Search (MCTS)
where we use large number of simulations
as an evaluation function. To guide the
search in the MCTS we use the Neural
Network learned on the human-played
games. In experimental evaluation, we
show that the Neural Network heuristic
significantly enhances the performance of
play. This leads to the first algorithm ca-
pable of human-like performance in the
game Gomoku-swap?2.

Keywords: MCTS, Gomoku,
Gomoku-swap2, Neural Network
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Abstrakt

V této préci se zamérujeme na feSeni hry
Gomoku-swap2. Problémem této hry je
obrovsky mnozstvi moznych akci na dany
tah a pomérné velka hloubka hry.Z toho
dtvodu ohodnocovaci funkce pro ohod-
noceni urovné herniho stavu je nejdile-
Zitéjsi cast programu hry. Z divodu vel-
kého prohledévaciho prostoru jsme pou-
zili algoritmus Monte Carlo Tree search
(MCTS). Pro usmérnovani prohledavéni
jsme pouzili Neuronovu Sif naucenou na
hrach, hranych hraci, misto random heu-
ristiky. V experimentech jsme prokézali
lepsi vysledky MCTS s neuronovou siti
nez zakladni MCTS. Toto feseni vedlo k
prvnimu algoritmu schopnému hrat hru
Gomoku-swap2.

Klicova slova: MCTS, Gomoku,
Gomoku-swap2, Neural Network



Contents

1 Introduction 1
2 Technical Backgroud 3
2.1 Agents and Utility .............
2.2 Games in Normal Form......... 4
2.2.1 Zero-sum Games ............ 5]
2.2.2 Strategies in Normal-form
Games . ... 5]
2.2.3 Nash Equilibrium ........... 6
2.3 Extensive-form Games.......... (
3 Gomoku 9
3.1 Development of Gomoku Rules .. [9|
3.1.1 Gomoku-pro...............
3.1.2 Gomoku-long-pro ..........
3.1.3 Gomoku-Swap .............
3.1.4 Gomoku-Swap2 ............
4 Algorithms 13
4.1 Minimax .................... 13
4.2 Monte Carlo Tree Search ......
4.2.1 Types of MCTS ...........
4.2.2 Problem with Simulation.... [18
4.2.3 Improving Simulations.. . . ...
5 Neural Network 21
5.1 Idea of Neural Network ........ 21]
5.1.1 Multi Layer Network .......
5.2Data ..o 23|
5.2.1 Training of Neural Network .
5.3 Final Neural Network ......... 24]
5.3.1 Application of Neural Network
toMCTS ... 25
6 Experiments 27
6.1 MCTS Basic vs. MCTS NN . ...

6.2 MCTS Basic vs. Neural Network [27
6.3 MCTS NN vs. Neural Network . 2§

6.4 Conclusion of Experiments . .. ..
7 Conclusion
Bibliography 31
A CD content

vii



Figures
2.1 Extensive-form Games..........

3.1 Gomoku board and stones. .. ....

3.2 Gomoku-pro game.............
3.3 Gomoku-long-pro game. .......
3.4 Gomoku-swap2. ..............
4.1 Minimax 1 ................... 13l
4.2 Minimax 2 ................. ..
4.3 Tic-tac-toe. . ................. 15l
4.4 Monte Carlo Tree Search. . .. ...
4.5 Basic random simulation....... 18
4.6 Improved random simulation . . .
5.1 My Neural Network ...........
5.2 Score at iterations............. 25

5.3 Score of multiplying the predicted
output with the expecting output.

5.4 Neural Network output for
simulation ..................... 26l

viii

Tables

2.1 Choosing color .........
2.2 A rock-scissor-paper game



Chapter 1

Introduction

In this thesis, we focus on solving the game Gomoku-swap2 which is the
modification of old strategy game Gomoku (tic-tac-toe) for two players [8][7].

The Gomoku-swap2 is a perfect information game where the action to be
played can be found in every state independently. The main challenge of this
game is the size of branching factor and depth of the game (the depth is 225
and branching factor is 225 — & where the x is the depth of a state in the
game tree). For this reason appropriate algorithm need to be used because
the evaluation function for estimates the quality of a game state is the most
important factor.

There are many recent advancements in the basic Gomoku using the
Alpha-Beta pruning and Monte Carlo Tree Search (MCTS) with domain
specific heuristics [9][6]. The main disadvantage of these methods is slow
performance (approximately few minutes to choose the right action for every
move). Therefore these approaches cannot be used in the game Gomoku-
swap?2 where the search space is large and strict rules make the game complex.
In this work we provide the first algorithm able to play Gomoku-swap2.

The algorithm MCTS got positive results in the similar board games
like GO [16], chess [10], othello [14], video games like Total War: Rome
II’s Campaign [4] where the enormous size of branching factor and small
amount of time are challenging or even in the imperfect games with complete
information like Poker [18].

To solve the game we use the MCTS with advanced heuristic guiding the
search. Similarly to Deepmind’s AlphaGo (is the first AI who beat the best
professional human player Lee Sedol in the game GO) we use the neural
network as the heuristic for guiding the search [I3][16]. We are interested in
applying the similar configuration of the Neural Network with less hidden
layers and a smaller number of filters because we want to use it on the personal
computer not on the compluter’s cluster like Deepmind’s AlphaGO.

I trained the Neural Network using 1,5 million games played by the human
players downloaded from the online server playok.com and offline server
piskvorky.cathedral. cz.

The experimental evaluation shows that the MCTS with the Neural Network
dominates in the Gomoku-swap2 with 90% winning rate against basic MCTS
even though the basic MCTS did one thousand times more iterations of

1



1. Introduction

MCTS algorithm than MCTS with Neural Network in the given time limit.
Which means that basic MCTS is one thousand times faster than the MCTS

with the Neural Network.



Chapter 2
Technical Backgroud

In this chapter I will explain basic parts of the Game Theory needed for
understanding how the Game Theories are applied in game Gomoku-swap?2.

B 21 Agents and Utility

Assume we have agents in some environment. This environment is built
from states. The transition between states is realized by taking an action.
To evaluate an action we will use utility function, which maps actions from
agents states to real numbers. It helps us to choose the best action because
these numbers give us information about how good an action is for an agent.

Example 2.1.1. Student and School

We begin with a simple example to demonstrate how utility function works
and how we will use it. Consider an agent student with name Gerry who is
in the fourth year of high school in last week before graduation. He has tree
options go to school immediately (7), sleep a few hours more and go to school
later (1), or not to go to school at all (a). If he is on his own, Gerry has a
utility of 5 for 4, 30 for | and 15 for a. However, Gerry is also interested in the
activities of two other agents Veronica and Jane. If he will be late Veronica
will be sad and she will stop talking to him for 2 days but only if she will be
at school. Jane, on the other hand, wants him to stay at home to be able
to sit with Veronica in school and she will let her materials for graduation
tests to Gerry but only if Veronica is at school. Unfortunately, there is only
50% chance that Veronica will be at school (sy) and only 30% that Jane will
be at school (ss). Gerry needs materials so if he got them his utility will be
increased by 200% but two days of not talking with Veronica got him sad and
the utility will decrease by 50% (utility decreases after the increase due to
materials from Jane). Now it will be easier to determine what choice Gerry
should choose. There are only 12 outcomes. Because Gerry has 3 options and
two other agents both have only 2 options. Lets describe outcomes, where u
is utility:
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ug(i) = 5
uG(l) = uv(ﬂs) - 30 + UV(Sv) . [30 . 0.5]
ug(l) = 0.5 - 30 + 0.5 - [30 - 0.5 = 225

(
ug(a) =05 - 15 + 0.5 - [(0.7-15) - 0.5 + 0.3 - (15-2) - 0.5 = 12.375

Now we can see that if Gerry gets up and will go to school immediately he
will reach ug (i) = 5. However, if he changes his mind and will go to school
later he will get the highest result ug(l) = 22.5 even if there is a chance that
Veronica won’t be here.

. 2.2 Games in Normal Form

The normal form is the most common representation of a game. The game
in normal form is usually represented with an n-dimensional matrix. This
representation does not include any notion of time or sequence, of actions of
the player which mean that the players are assumed to move simultaneously
without any information about the opponents.

Definition 2.2.1. Games in normal form [15]

Normal-form game is tuple (N,A,u), where:
B N is finite set of n players, indezxed by i.

B A=A x--- x A; where A; is a finite set of actions available to player
i. Fach vector a = (ay, ..., ap) € A is called an action profile;
By = (uy, ..., u,) where u; : A — R is a real-valued utility (or payoff)

function for player i.

Assume game of choosing the color in T'able 2.1/ where you need to choose the
black or the white color. The N is 2, A is {Black, White} x{Black, White} and
U = (U1bh Ulbws Ulwhs Wlww> U2bb, Udbuw> U2whs U2ww) Where Uuypy 15 — 1, Uy, 05 2,
Ui 18 1, Utww 18 — 2, Ugpp 1S — 1, Ugpy 1S 1, Ugyp 18 2 and Ugqyy 1S — 2 us.

a) =uy(sv)-15 + uy(=s) - [(us(nss) - 15) - uy(s) +uy(sy) - (15- 2)-

0.5]

Choosing color
Player 2 Player 2
b w
Player 1 b -1, -1 2,1
Player 1 W 1,2 -2, -2

Table 2.1: We depict a game where two players simultaneously choose a color.
The b is the black color and the w is the white color.
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B 2.2.1 Zero-sum Games

Zero-sum games are two-player games where for any action profile the player
1 has opposite utility value to player 2.

Definition 2.2.2. Zero-sum Games [15]
A two player normal-form game is zero-sum game if for each strategy profile
a€ Ay x Ay it is the case that uy(a) + uz(a) = 0.

Assume the player one will play an action rock in the game rock, scissor, paper
in T'able 2.2 and player two will play scissor. Then the player one gains the
utility 1 while the player two gains utility 0.

Rock, Scissor and Paper
Player 2 Player 2 Player 2
Rock Scissor Paper
Player 1 Rock 0,0 1, -1 -1, 1
Player 1 Scissor -1, 1 0,0 1, -1
Player 1 Paper 1, -1 -1, 1 0,0

Table 2.2: A rock-scissor-paper game.

B 2.2.2 Strategies in Normal-form Games

Best strategies are used to describe behavior of players.

We have two basic strategy representations in normal-form games.

First one is the pure strategy, which represent deterministic play. The pure
strategy in normal-form corresponds to actions of players.

The second one is a mixed strategy, which represent non-deterministic play.

Definition 2.2.3. Mixed strategy [15]
Let (N, A, u) be a normal-form game, and for any set X let I1(X) be the set

of all probability distributions over X. Then the set of mized strategies for
player i is S; = II(A;).

Assume the game depicted in T'able [2.2] rock, scissor and paper. In this
game, one of the pure strategies is to play always rock.

The mixed-strategy means that you will play rock with probability pq,
scissor with probability ps and paper with probability ps where > p; = 1.

The pure strategy is a special case of mixed strategy where we use only
one possible action with probability 1 (it means all of them have probability
0 except one). Fully mixed strategy means that there is for every action
probability bigger than zero. In multiple agents games is hard to find optimal
strategy because the outcome of player 1 depends on the outcome of player 2.
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B 2.2.3 Nash Equilibrium

Now we will look at games from an individual agent’s point of view, rather
than from the vantage point of an outside observer. This will lead us to the
most influential solution concept in game theory, the Nash equilibrium [I5].

Our first observation is that if an agent knew how the others were going
to play, his strategic problem would become simple. Specifically, he would
be left with the single-agent problem of choosing a utility-maximizing action.
Formally, define s_; = (s1,...,8i-1, Si+1,---,Sn) a strategy profile s without
agent i’s strategy. Thus we can write s = (s;, s—;) [15]. The first player
expects the best strategy from the second player and the second player expects
best strategy from the first player. This leas to Nash equilibrium because it
expects from each player the best strategy.

Definition 2.2.4. Best response [15]
Best response of player i to the strategy s—; is a mized strategy s; such that
wi(sy, s—i) > u;i(si,s—;) for all strategies s; € S;.

From the definition we can see that there can exist more best responses
because there can be two or more best responses with the same result.

Definition 2.2.5. Nash equilibrium [15]
A strategy profile s = (s1,... Sn) is a Nash equilibrium if, for all agents
1, 8; 1S a best response to s_;.

Assume the example rock, scissor, paper in Table [2.2. The Nash Equilib-

rium is playing rock with %, scissor with % and paper with %

. 2.3 Extensive-form Games

Extensive-form is another representation of the game. In this thesis we focus
only on perfect information extensive-form games which are commonly vi-
sualized as game trees as show in Figure 2.1. Opposite to normal-form, it
includes time, or sequence, of actions of the players. Informally speaking,
the node of the tree is state for the player in the environment and the edge
from one node to another node is an action of the player. The terminal states
correspond to leafs of the tree. The utility function set values to terminal
states (nodes).

Definition 2.3.1. Extensive form game [15]
A perfect information (finite) game(in extensive form) is a tuple G = (N,A,H,Z,x,p,0,u),
where:

B N is a set of n players;
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A is a (single) set of actions;
H is a set of nonterminal choice nodes;
Z is a set of terminal nodes, disjoint from H;

x: H— 24 is the action function, which assigns to each choice node a
set of possible actions;

p: H — N is the player function, which assigns to each nonterminal
node a player i € N who chooses an action at that node;

o: Hx A — HU Z is the successor function, which maps a choice node
and an action to a new choice node or terminal node such that for all
hl,hz e H and ai,ag € A, ifo(hl,al) = J(hQ,CLQ) then h1 = h2 and aj
= as; and

u = (ui,...,up), where u; : Z — R is a real-valued utility function for
player i on the terminal nodes Z.

-1, 1 0, 0

Figure 2.1: The circle nodes (red-player 1, blue-player 2) are nonterminal nodes.
The square nodes are terminal nodes with utility values (-1,1 says that the first
player lost and the second player won). The edges {a,b,c,d}=A are actions of
the player.






Chapter 3

Gomoku

Gomoku [8] also know as tic tac toe is a two player game. It is played on a
board with black and white stones on 15x15 intersection made of wood. The
starting position of a game is empty board. The player who has black stones
always starts the game. Stones need to be put on intersections, not on the
squares. The stones already put on the board cannot be removed or changed
until the end of the game. The winner of the game is the first player who
get unbroken exactly five stones in a row either horizontally, vertically, or
diagonally. More stones than five in a row is called overline and it is not
considered as win.

Example 3.0.1. [7]

Figure 3.1: Gomoku board and stones.

B 31 Development of Gomoku Rules

The Gomoku itself is old few thousands of years.

Basic rules are really simple. The first player puts the first black stone
on the board then the second player puts the first white stone on the board
then the first player puts the second black stone on the board and they
continuously put their stones until one of them has win or board is full.

9



3. Gomoku

In the 19th century people started to realized that the first player can
always guarantee to win on the start of the game so called surewin. This
was proven with L. Victor Allis in 1994 who comes with the algorithm of
proof-number search and dependency-based search [2]. He even proved that
restriction to exactly five stones in a row doesn’t change the guarantee to win
of first player.

The problem with a huge advantage of the first player brings several varia-
tions of Gomoku. Most know are gomoku — pro, gomoku — long — pro, swap
and swap?2.

B 3.1.1 Gomoku-pro

The starting player (black) puts the first stone to the middle intersection
of the board (HS8), this move is compulsory. The second player can put the
second move anywhere on the board. Now it’s black’s turn and the third
move has to be outside a 5x5 square from the centre of the board (H8) [8].

Even after this restriction shown in Figure [3.2] [8], black player has huge
advantage maybe even sure win too but it was still not mathematically proven.

Figure 3.2: The second player is on the move. Black stones have advantage
even when the 3th and 5th moves were played poorly.

B 3.1.2 Gomoku-long-pro

The first move of the starting player (black) is compulsory to be put to the
middle intersection of the board (H8). Then the second player (white) can
put the second stone anywhere on the board. The 3rd move must be put
outside a 7x7 square. The centre of the square is the first black stone on H8 [§].

These rules (shown in Figure 3.3|[§]) improve the balance between players
than Gomoku — basic or Gomoku — pro. Unfortunately, only a few variants

10



3.1. Development of Gomoku Rules

in these rules were possible to play for the first player due to restrictions and
possible chances of the second player.

Figure 3.3: This opening was used a lot in the swap but last few years is
considered as a sure win for white with top world’s players. We can compare
with Figure |3.2] how situation change when only one stone is shifted from L9 to
M9.

B 3.1.3 Gomoku-Swap

The starting player puts the first three stones anywhere on the board (two
black stones and a white one). The second player can decide whether s/he
wants to keep white stones and put a fourth stone or s/he can swap and
control the black stones. After this start the players keep on playing till
someone gets five in a row or board is full [§].

These rules had only one problem. It has to much weight on the decision
of the choosing color. The second player needs to calculate the whole game
to choose correctly or he will risks to choose wrong color.

B 3.1.4 Gomoku-Swap?2

Gomoku-swap?2 rules [§]:The first player puts three stones (two blacks and
one white) on any intersections of the gomoku board. The second player has
three options now:

® s/he can choose white and puts the 4th stone
® s/he can swap and controls the black stones

B s/he can put two more stones (one black and one white stone) so there
will be a position composed of five stones on the board and s/he passes
the opportunity to choose color to the opponent.

11



3. Gomoku

8 [f the second player choose to add two more stones the first player is
forced to choose the color.

m  After this start the players keep on playing till someone gets five in a
row or board is full.

These rules shown in (Figure |3.4)) change Gomoku from the view of players
to fair game. It allows the first player to prepare strong opening (first three
moves) as in Gomoku — swap where he knows best moves until the end of
game. But in Gomoku-swap2 second player has the opportunity to add two
more stones to prevent first player to win with only prepared best moves. This
makes the game more complex and more interesting. It leads to strategies
like to choose the complex openings or preparing complex 4" and 5" moves
to highly expecting openings from the first player.
This rule is adapted and used with professional players in the world.

In this thesis we used Gomoku-swap2 rules in our artificial intelligence.

Example 3.1.1. Gomoku-swap?2

14
13
12 2}
1"
10 o
: 00
8
7 &
6
5
4
3
2
1
A B CDETFGHIJKTLMUNO

Figure 3.4: The position of the game after the second player added two stones.
The first player is choosing the color of stones now.
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Chapter 4
Algorithms

In this chapter, we focus on Minimax and Monte Carlo Tree Search (MCTS).
These algorithms are commonly used to solve perfect information games like
Gomoku-swap2.

. 4.1 Minimax

Minimax is a recursive algorithm for finding the best action in a given state
of perfect information extensive form game.

The algorithm is applied to the tree of the game. Figure |4.1| demonstrates
the search. The arrays show the way how the algorithm search the game tree.
The algorithm propagate the values in the bottom up fashion.

Figure 4.1: The circles represent maximizing player (the player who start) and
the squares represent the opponent (minimizing player). The red and the blue
arrows show the path of the algorithm where the algorithm went always to the
right in the direction of dart. The black circles and squares represent the nodes
that algorithm didn’t visit due to pruning.

In the Algorithm |1 we provide the pseudocode of the minimax algorithm.
When evaluating node, the algorithm just go recursively in the left most child
of the node of the tree until we reach the leaf. After that, if the parent node
has more children we will continue to the next child and recursively we will
get the best value for the root of the game tree. if we maximize we compare
the value of leaf with the max value that we got from the parent node and
return the bigger value to the parent node. If we minimize we compare the
min value with the leaf value and return the smaller value.

We assume the positive infinity to be the win of the maximizing player,
negative infinity to be the win of the minimizing player and zero the draw of

13



4. Algorithms

the game. Next values assume the evaluation of the states of game where we
do not reach the end of the game due to limited resources.

Algorithm 1 minimax(node, depth, maximizingPlayer)

if if depth = 0 or node is a terminal node then
return the heuristic value of node
end if
if maximizingPlayer then
bestValue < —oo
for all child of node do
V'« minimax(child, dept — 1, FALSE)
bestValue <— max(bestValue,V)
end for
else
bestValue < oo
for all child of node do
V « minimax(child, dept — 1, TRUE)
bestValue <— min(bestValue, V)
end for
return bestValue
end if

Definition 4.1.1. Ewvaluating tree for Minimaz [19)

The values of nodes comes from a rule that if the result of a move is an
immediate win for player 1 it is assigned positive infinity and, if it is an
immediate win for player 2, negative infinity. The value to player 1 of any
other mowve is the mazimum of the values resulting from each of player’s 2
possible replies. For this reason, player 1 is called the mazximizing player and
player 2 is called the minimizing player, hence the name minimax algorithm.
The above algorithm will assign a value of positive or negative infinity to
any position since the value of every position will be the value of some final
winning or losing position.

In the large games like Gomoku, chess or GO it is not possible to reach all
leafs of the game tree due to computations resources.

14



4.1. Minimax

Figure 4.2: The circles represent maximizing player (the player who start) and
the squares represent the opponent (minimizing player). The red and the blue
arrows show the path of the algorithm where the algorithm went always to the
right in the direction of dart. We can see that algorithm visited all nodes of
tree.

1
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Figure 4.3: Assume a game where two players play tic-tac-toe against each other.
In own turn, you choose the action with max value and second player will play
his max value in next action. So you need to minimize the maximum loss. The
dark black nodes show the visited nodes with maxmin, the light grey shows the
skipped nodes with maxmin and the green nodes show the nodes which would
be selected with maxmin algorithm if the first branch would be not winning
branch.

The essential attribute of minimax is pruning. The algorithm prunes a
branch if there is no chance to get better result from this branch. I will
show three examples. First: Assume example in Figure 4.1. The minimax
algorithm didn’t visit 3 leafs from 8 leafs in the left branch of the root. In
the right branch of root it even skipped few nodes which were not leaf at all
because the root of the tree send the —13 value to the minimizing child as
the lower bound and the child get the value —75 from own children as upper
bound (-13, -75), which is the empty interval. For this reason is not need to
search next children because minimizing node has guarantee that the best
move is smaller than —13 and hence, the maximizing root will always prefer
—13.

Second: Assume example in Figure 4.3, The minimax algorithm visited
only the left-most branch of the root.

Unfortunately, it can happen that minimax will prune nothing and that
it will search whole game tree (it is the worst case) as we can see in Figure |4.2.

Games with the huge game tree cannot be solve with minimaz due to
limited computational resources and it is difficult to get good heuristics. This

reason leads to approximation algorithm such as Monte Carlo Tree Search.
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. 4.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a best-first search technique algorithm
used for the games with the finite length like GO, chess, poker, Gomoku [16][5]
and many others. The basic MCTS is illustrated in Figure |4.4.

Repeated X t|mes

Selection Expansmn Simulation Backpropagatlon

Figure 4.4: Monte Carlo Tree Search.

The main idea of the algorithm is to build a tree of the most promising
nodes chosen with some heuristics. The leafs of the Monte Carlo tree are
evaluated based on random simulations of the game starting in the state
corresponding to the leaf. The algorithm balances between expanding nodes of
most promising branches (exploitation) and expanding nodes of less promising
branches (exploration).

The node of Monte Carlo tree used in Gomoku store from: a position of
stone, a color of the stone, black stone’s owner, an array of possible children,
a number of visits and score reached from sum of how many times the node
was in win, lost or draw games.

Definition 4.2.1. Monte Carlo Tree Search [5]
The algorithm iteratively uses and builds the Monte Carlo tree of the most
promising future game states, according to the following mechanism:

Selection
While the state is found in the Monte Carlo tree, the next action is chosen
according to the statistics stored, in a way that balances between exploitation
and exploration. On the one hand, the task is often to select the game action
that leads to the best results so far (exploitation). On the other hand, less
promising actions still have to be explored, due to the uncertainty of the
evaluation (exploration).

Ezxpansion
When the selection reaches the first state that cannot be found in the Monte
Carlo tree, the state is added as a new node. This way, the tree is expanded
by one node for each iteration of MCTS (selection, expansion, simulation,
backpropagation).

Simulation
For the rest of the game, actions are selected at random until the end of the
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4.2. Monte Carlo Tree Search

game. Naturally, the adequate weighting of action selection probabilities has
a stgnificant effect on speed of convergence of MCTS to best actions. We
can use heuristic knowledge to give larger weights to actions that look more
promising to increase convergence of MCTS.

Backpropagation
After reaching the end of the simulated game, we update each Monte Carlo tree
node that was traversed during that iteration. The visit counts are increased
and the win/loss ratio is modified according to the outcome.

The game action finally executed by the program in the actual game, is the
one corresponding to the child which was explored the most.

It was proven that the evaluation of moves in MCTS converges to results
of minimax algorithm [12][]. Unfortunately, the basic MCTS converges very
slowly.

B 421 Typesof MCTS

The most know type of MCTS is the MCTS using UCT (Upper Confidence
Bound 1 applied to trees) function in the selection part of MCTS.

Definition 4.2.2. UCT [3]

UCT is the evaluation function f = max kV(j), where k is number of
‘76 b AR

children, and V'(§) is value of j** child:

N 2/2xIn (N)
V(j) = X; + 2x Cp x —

where :

> . Z 1-win,0-draw,—1-lost
B X, s : :
J number of simulations

win - how many times the node was in the winning sequence
draw - how many times the node was in the drawing sequence

lost - how many times the node was in the loosing sequence
® C), is the constant representing the exploration/exploitation tradeoff
B n; is the number of times the Gt child has been visited

® N is the number of times current (parent) node has been visited

We experimented with additional selection functions (Exp3 [3]), however
UCT had the best performance in the game Gomoku.
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4. Algorithms

B 4.2.2 Problem with Simulation

The simulation part affects how the Monte Carto tree converges to the results
of the minimax algorithm. The random simulation converges slowly due to
the large branching factor. The random simulation needs a high amount of
simulations to reach the right results.

A B €C D E F G H I J K L M N O

Figure 4.5: Assume this position to be evaluated by a random simulation. The
player with black stones is on the move and has the opportunity to win with
only one move(kl11). If he choose different move than the white color will have
the chance to win the game with j5 or g3.

We can see in Figure |4.5, that black player is on the move and he has
only one action (K11) how to win and white player will than has two actions
(j5, g3) how to win if the black player will play anything else then K11. It
points out that only specific configurations are winning and the random
simulations have a small probability of reaching them, so extremely high
amount of simulations is need which is time consuming.
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4.2. Monte Carlo Tree Search

B 4.2.3 Improving Simulations

A B C D E F G H I J K L M N O

Figure 4.6: Improved random simulation

Assume the position in Figure [4.6| to be the start of a random simulation.
The blue polygon restricts the possible moves for random playing where each
intersection inside of the blue polygon is the possible move for the random
player. The black stones and big white stones represent the part of the real
game. Green stones (white stones) with red stones (black stones) were taken
with the selection. The green stones assume the white stones.

This version of simulations we use in the MCTS Basic and the same princi-
ple we use in expansion of the MCTS Basic. This improvement increased the
efficiency of MCTS Basic.

The bad results of MCTS when playing the game Gomoku-swap2 convinced
us to search for a heuristic to guide the selection and simulation. We inspired
with AlphaGo [16] - the first program in game GO who beat human. They
used Neural Network to guide the search of MCTS.
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Chapter 5

Neural Network

In this chapter, we explain the idea of the Neural Networks and describe the
Neural Network used as a heuristic in MCTS applied to Gomoku-swap2.

. 5.1 Idea of Neural Network

Neural networks are a set of algorithms, modeled loosely after the human
brain, that are designed to recognize patterns. They interpret sensory data
through a kind of machine perception, labeling or clustering raw input. The
patterns they recognize are numerical, contained in vectors, into which all
real-world data, be it images, sound, text or time series, must be translated [1].

Definition 5.1.1. Neural Networks [11]

A neural network is a sorted triple (N, V, w) with two sets N, V and a
function w, where N is the set of neurons and V a set {(i, j)[i, j € N} whose
elements are called connections between neuron i and neuron j. The function
w : V — R defines the weights, where w((i, j)), the weight of the connection
between neuron i and neuron j, is shortened to w; j . Depending on the point of
view it is either undefined or 0 for connections that do not exist in the network.

B 5.1.1 Multi Layer Network

A multilayer network is a network consisting of several layers of neurons which
are interconnected. The input layer is stacked onto the first-layer neural
network and a feed-forward network (A neural network that takes the initial
input and triggers the activation of each layer of the network successively,
without circulating. Feed-forward nets contrast with recurrent and recursive
nets in that feed-forward nets never let the output of one node circle back
to the same or previous nodes). Each subsequent layer after the input layer
uses the output of the previous layer as its input [1].

The use of the convolution Neural Network was motivated by its sucess in
AlphaGO [16].
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5. Neural Network

Definition 5.1.2. Convolution [17]
For simplicity we assume a grayscale image to be defined by a function

I:{1,..,m} x{l,..,ne} = WCR,(4,5) = L

such that the image I can be represented by an array of size n1 X ng Given
the filter K ¢ REM+1D)x@ha+1) “4pe discrete convolution of the image I with
filter K is given by

h1  h2

(I . K)r,s = Z Z Ku,vIr+u,s+v

u=h1 v=ho
where the filter K is given by

K*hhfhz K*hlth
K= : Ko, :

)

: (5.1)
Kh17_h2 Khl,hg

Note that the behavior of this operation towards the borders of the image needs
to be defined properly. A commonly used filter for smoothing is the discrete
Gaussian filter Kg(s) which is defined by

1 (7“2 + 52
ex
V2ono2 P 202

where o is the standard deviation of the Gaussian distribution.

(KG(O'))""yS =

)

Definition 5.1.3. Convolution Layer networks [17]

Let layer 1 be a convolutional layer. Then, the input of layer | comprises
(1-1) . X (1-1) (I-1)

my feature maps from the previous layer, each of size m X ms .

In the case where | = 1, the input is a single image I consisting of one or

more channels. This way, a convolutional neural network directly accepts raw

images as input. The output of layer | consists of mgl) feature maps of size

mgl) X m:(gl). The it" feature map in layer I, denoted Y;(l), is computed as

Y(l) — B(l) 4 mgl_l) ZKz(,l]) . Y‘(l_l)

% % J
j=1

where BZ-(Z) is a bias matriz and KZ(ZJ) is the filter of size 2h1(l) + 1 X 2h§l)
+ 1 connecting the j* feature map in layer (1 - 1) with the it" feature map in
layer 1.

For mathematical purposes, a convolution is the integral measure of how
much two functions overlap as one passes over the other. Think of a convolu-
tion as a way of mixing two functions by multiplying them [IJ.
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5.2. Data

Hidden layers

225 Inputs

sindyno ¢zz

Figure 5.1: My Neural Network has 225 inputs (blue squares), two hidden
convolution layers of kernel size 5 x 5 both with four filters(red circles) and 225
outputs . The black arrows show connections.

I trained Neural Network to be able to predict next move of player. 1
passed in the board position as a 15 x 15 matrix. I used convolution layers
due to efficiency in the game GO [16]. As you can see in Figure 5.1 my
Neural Network has 225 inputs (blue squares), two hidden convolution layers
of kernel size 5 x 5 both with four filters (red circles) and 225 outputs (values
of output are probabilities of the board positions where we accept only these
values which are not positions of the stones on the board). The black arrows
show connections. For the activation, I used rectifier activation function [20].
The number of layers and the number of filters are small due to the speed of
Neural Network because we need it for the simulation games.

. 5.2 Data

In the beginning the data look like

1. h8 g7 2. ell white 8. — i7 4. h6 h7 5. §7 g6 6. f7i6 7. i8 g8 8. 99 f9 9.
99 el0 0-1

where strings 1.,2.,3. assume the number of the round. One round is
formed from two actions (h8, ¢g7). One action of player 1 (h8) and one
action of player 2 (g7). Strings like h8 assume the position on board
(the matrix (15x15) indexed by the set {a,b,c,d,e, f, g, h,i,5,k,l,m,n,o} X
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}, al assume the intersection fulfill
the condition first row and the first column), the A8 is the center of the board,
the string white says that the player 2 choose the white color, the string —
says that the player 1 is not allowed to play in the round and the string 0-1
says that player 2 won the game.

We take the original data (above) and transform them to the configuration
of the board and the last action of the player. Because there were several
actions for each configuration which complicated the training of the Neural
Network, we change the data to the configuration of the board and the relative
frequency of the moves (from data).

The process of changing data:

We transformed data from matrix (15x15) to the vector (the length 225).
For the example the h8 changed to 112. This vector we used as input for the
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5. Neural Network

Neural Network.

We separate the game to subgames where the subgame is first  — 1 actions
of the game and the 2" action is the next expected action. The z is from
range 2 — k where the k is the number of moves of the game. For this reason,
the each game gives us 9 — 223 positions (the input data for the Neural
Network).

To increase the performance of training the Neural Network we merge the
different expected actions for the same inputs together where the probabilities
of the expected actions of the new output sum to 1.

We have used 1,5 million games (25 million positions) of real players from
piskvorky.cathedral.cz and playok.com.

We separated the data for the Neural Network to test and train data where
the test data served for controlling how good the Neural Network is. 100000
positions were used for the test data. The rest (24900000) were the training
data.

B 5.2.1 Training of Neural Network

To measure how fast the Neural Network is learning we measure score at
iteration and score of multiplying output from the Neural Network with the
expecting output.

Score at iteration [I]
This is the value of the loss function on the each 2000 input data. We used
the Multiclass Cross Entropy [1)].

In the Figure 5.2 we can see that the loss function decreased (the positive
sign of training).

Score of output
Predicted output (the vector p = [po,p1, D2, - - -, P224] ) multiplied by the expected

output (the vector e = [eg,e1,€a,...,e24]), SO = 3 pje;.
j€0,1,..,224

In the Figure 5.3 we can see that the score continuously increased on test
data but the score of training data oscillate due to different inputs of training
data (each next point is a different input of training data).

. 5.3 Final Neural Network

The best final Neural Network was trained for 15000 epoch on MetaCentrum.
One epoch contained 10000 positions which were fit to the Neural Network.

The Figure |5.2] shows that the Multiclass Cross Entropy loss function
continuously decreased. After 50000 iterations we can observe huge differences.
It can be caused by the large amount of data compared to the small Neural
Network.
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5.3. Final Neural Network

The Figure [5.3| shows that the Neural Network continuously increased in
the score on the testing data but the score of the training data oscillate due
to different files of the training data (each next point is a different file of the
training data).
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Figure 5.2: We can see that the inputs fitting to Neural Network has huge
differences and that it let score oscillate too much.

NeuralNetwork - arrays score

—Test data 4 filters ||
— Train data 4 filters

Score

L L L L L L L
o 100 200 300 400 500 GO0 700 800
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Figure 5.3: We can see that the score continuously increased on test data but
the score of training data oscillate due to different files of training data (each
next point is a different file of training data).

B 5.3.1 Application of Neural Network to MCTS

(i
jeogl,?.},%m( (@),

where I(j) is the j** position of the board (need to be empty)) and in the
expansion (empty positions with the value bigger than 0.013) parts of the
Monte Carlo Tree Search (MCTS).

The average time of query to the Neural Network is 3.8ms on 1.6GHz
processor.

Now we can compare the Neural Network simulation with the random
simulation from subsection [4.2.3l

We use the Neural Network as the heuristic in the simulation (
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5. Neural Network

Figure 5.4: The left picture is the input for the Neural Network. The right
picture contains the input with the output of the Neural Network (the blue
circles).

The position in the left picture in Figure 5.4 is the input for the Neural
Network. The blue stones in the right picture in Figure [5.4] are the possible
actions from the Neural Network output for playing with probability bigger
than 0.015. The blue stone with the yellow circle is the move with the highest
probability. The black stones and the white stones represent the part of the
real game. The green (white) stones with red (black) stones were chosen with
the selection.

Now we can compare random simulation in Figure 4.6| with the Neural
Network simulation in Figure [5.4]. As we can see the Neural Network prefer
only a few stones. This can be used in selection because Neural Network
detects the area of the desk where is wise (from the point of the human) to
play the next action. The second advantage of Neural Network is searching
for patterns like position moves or threes (three stones in a row) and fours
(four stones in a row). Unfortunately, Neural Network has one disadvantage.
From the experiments in |chapter 6/ we know that the MCTS basic (with
improved random simulation) does 1000 times more iterations of MCTS than
the MCTS with the Neural Network simulation. However the MCTS with
the Neural Network is still better than MCTS basic.
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Chapter 6

Experiments

In this chapter, we present the comparison of experiments.

We compared basic MCTS with the improved simulations (MCTS basic)
versus MCTS with the Neural Network (MCTS NN), basic MCTS versus
Neural Network and MCTS NN versus Neural Network.

B 6.1 MCTS Basic vs. MCTS NN

First experiment compares MCTS Basic and MCTS NN where both have the
same time to next move. The time was set to 1 minute for one move. The
MCTS basic made approximately 20 million of iterations and the MCTS NN
only 2 thousand of iterations in the given time .

The experiment run 7 days on 11 cores on the MetaCentrum.

The MCTS NN lost only 203 games from 2100 and reached 90,3% winning
rate. The standard deviation is 0.59.

The second experiment compares algorithms where both algorithms have
the same number of iterations of MCTS. We set the number of iterations
to 30000. The experiment runs only 7 days on two cores. The experiment
completed 74 games. MCTS NN won 67 games and got 90,5% winning rate.
We need to say that NN lost 6 games when it starts the game and only 1 game
when the opponent start the game. The small amount of games is due to first
experiment where the MCTS NN proves dominant. For that reason we expect
that decreasing the amount of iterations of MCTS Basic and increasing the
amount of iterations of MCTS NN not change the domination of MCTS NN.

. 6.2 MCTS Basic vs. Neural Network

This experiment was about to compares the Neural Network with the basic
MCTS.

The experiment runs only a few hours because the Neural Network needs
only a few ms to return the move.
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6. Experiments

In this experiment we set number of iterations of MCTS to 1000. I let the
half of games start the Neural Network and the second half of games the
MCTS Basic.

The result was 95% of winning rate for MCTS Basic from 1000 games.

B 6.3 MCTS NN vs. Neural Network

We did only one experiment. We limited the time to 1s on move for MCTS
NN and it made approximately 50 iterations of the MCTS in the given time.
The half of games start MCTS Alien and second half of games start the
Neural Network.

The amount of games was set to 1000. The MCTS Alien lost only one
game and this game start the MCTS Alien itself. The winning rate of MCTS
Alien was 99,9%.

B 6.4 Conclusion of Experiments

The experiments show us that the basic MCTS and the simple Neural Network
are bad but the combination of these two works fine. The experiments proved
that basic MCTS is 1000 times faster than MCTS NN but it is quite inefficient.
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Chapter 7

Conclusion

We create the first player for Gomoku-swap2. We use Monte Carlo Tree
Search (MCTS) algorithm with the Neural Network as the heuristic for the
simulation and the expansion parts (instead of the random heuristic).

We collect the data from human players. To train the Neural Network we
modified these data to be able to use them for our machine learning methods
- the convolution multilayer Neural Network. We experimented with data to
increase the learning speed of the Neural Network.

We show that the Neural Network significantly improves the performance
of MCTS. It proves that the Neural Network is acceptable as the heuristic
for the MCTS. The only problem is slow speed of the Neural Network.

We show that the basic MCTS with random heuristic is not acceptable for
the solving the Gomoku-swap2 because of needs a huge amount of iterations
to reach the right outcomes (it cost time).

As a future work, we need to increase the performance of the Neural
Network. For increase the performance we need to use a different data for
training the Neural Network. For example, the data played with professional
players on the long time games (live tournaments).
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Appendix A
CD content

The CD contents three packages:
SourceCode - it contents the source code of the bachelor thesis.

GomokuSwap - this package contents jar file of program and the Neural
Network (both need to be in the same folder to ensure working).

BachelorThesisText - it contents the pdf file of bachelor thesis.
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